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ABSTRACT

A Plotkin-type upper bound and a Gilbert-type lower bound are .
proved for the feedback-decoding and definite-decoding minimum dis-
tances respectively of binary convolutional codes. In the former case,“
a very simple bound is derived which shows that the ratio ¢f feedback -
‘decoding minimum distance to constraint length is asymptotically upper-"
bounded by L (1-R) for codes of rate R . In the latter case, it is

shownh that the ratio dpp/npp of definite-decoding minimum distance - .
to constraint length is asymptotically lower bounded as H (dD / nDD) >
.0.1 (1-R)/(1+R) for the best codes of rate R. This derivation re- ;
quires. the development of several interesting relationships between - .-
convolutional codes and linear feedback shift-registers.

1. Introduction

In the following sections, we shall present some bounds on t}ﬁa o
an:ainable minimum distance for convolutional codes. The derivation. .~
. of these bound leads also to the establishment of certain interesting. e
algebraic properties of these codes. The results herein have evolved *’
" over the past several years and have benefitted considerably from the .~
work of severa)l of our students, particularly R. Kolor and W. Wilder, ...
“to the point that they are now sufficiently unified to offer to 6ther e
workers in the field. In this section, we review the necessary back-"""
ground material on convolutional codes required in the followmg sec-
tions.

v In this paper, only convolutional cod‘ “in canonic systematic':
form will be considered and the reader is referred to the literature [1]
.. for the justification that this results in no 1oss of generality. Por con
venience, the discussion will also be restricted to binagy codés un-
less acpucmy stated to the contrary. :
T Let i - denote a K-dimensional column vector over GP(Z) 5
_the hinary number ﬂeld. v :l‘hen _1_0, i 1, vasyd i - denotes a sequexice’
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of such vectors and we shall consxder that the components of i re
the K information digits to be encoded at fime instant u. A (canomc
systematic) corvoluuonal code of memory order m .is specified by the
matrices GO Gl Sy Gm where éach G, is an (N ~-K)X K binary
matrix. The N encoded digits at time instant u are the components
of the column vector whose first K components form i i, and whose
last N-K components form the vector p,, given by

Eu=G§_ +G11_ -1+"'+Gm-i—u-m (1)
where we assume i; =0 if 4 <0: The components of b, are the
N -K parity digits “formed by the convolutional code at time instant
u . Therate R of the code is defined as R =K/N .

It should be noted from (1) that a convolutional code of memory
order m = 0 is just a systematic linear block code and conversely.
Hence the theory of convolutfonal codes includes that of block codes
as a special case which perhaps accounts for the greater difficulty
with which distance bounds are derived for the former class of codes.

2. A Plotkin Upper Bound oh Feedback Decoding Minimum Distance

The usual decoding method for convolutional codes, called feed-
back decoding (FD) by Robinson [2] , calls for the decoding estimate
of i, tobe made from the received digits over time units- u through
u +m on the assumption that. i} 3, .-+, i,., have all been cor-
rectly decoded. With this assumption, the decoding of i ig is typical
of the decoding of any i, and hence the feedback-decoding minimum
distance, dF , .is appropriately defined as the fewest number of
positiohs that two encoded sequences with differing vaIues of 1, are
found to disagree over the time span 0 through m .  The total number
of positions within this time span, hamely (m +1)N, is called the
feedback-decoding constraint length and will be denoted as npp -

By the usual linearity argument, it follows that °

.éFD.. min W (i 1,..,,%,20,21,"..'.,.21“) , (2) |

i O* 0 ‘

where’ WH( ) denotes the Hamming weight, i.e. the number of non~
zero components among the vectors, of the-enclosed vectors. |

Inthe remainder of this section, an upper bound on the ratio
dP /nFD will be obtained which as- ng D ‘increases tends to the same
value as, the familiar asymptotic Plotkin upper bound for block codes
with the’ same rate R . Herice this bound for convolutional .codes will
Ialso be. called a Plotkin bound. The derivation of this bound is facili-
“tated’by the introduction of the following: = . .
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Defm1tion 1: The integer d{m, N, K) is the: maximum’ value of: dPD
for the class of all convolutional codes of memory order m- for’ en- o
coding K binary digits per time. instant intc N digits. B
In terms of the quantity d{m, N, K), we next state four lemmas
which will then be combined to yield the sought—for Plotkm bound. :
Lemma 1: d(m, N, K) <d(m, N-K+1, 1} :
Proof: Note that the partial minimization of the nghthand s1de of ( 2)
over those i, which are all zero in their last - K~1 components 1s
equivalent to the full minimization for the code with 1 information
and N - (K-1) encoded digits per time instant whose matrices Gj :
are just the first columns of the original matrices., Hence, for every
code with K information and N enicoded digits per time instant -
there is a code with. 1 information and N - K+! encoded digits pe
time instant whose mininum distance dFD is at least as great as -
that of the first code. N-1 :
Lemma 2: For N odd, d(m, N, 1) <N+m-—-—2— .
Proof: We claim first that when K=1, there will be a code having
dpp = d{m, N, K) and having Gg = (1 1, » 1} the (N -1)-dime
sional all-one column vector, To show this cons;der first any code
in which the k-th component of G, is 0 .. If this is also true for:
every G, then from (1) it follows that the kK-th comporent of p.;
is 0 forall u, so thatchanging the k-th component of G, to ‘i
will increase dpp . Otherwise, let 'n be the smallest integer such
that G, hasa 1 inthe k-th component. From (1) it follows that
has a 0 inits k-th component for u <n ~From (1) it also
‘follows that moving the k-th' component of "G, to the k=th com='
ponentof G;, j=0,1,... (m= -n); has only the effect of moving’ . ="
the k-th component of Bn+y to the k-th’ component of- B for all
j >0 . Hence, we see from (2) that this new code has dopy -at least
as great as the original code, and we also note that this new code -
hasa 1 in the k-th component of GQ . Since k is arbitraty, the
claim follows. '
It remains to show that when GO = (1 1, Y 1) and ig= 1

Sl

then it is always possible to choose i, +' %1y to produce:a vector

(igs iy o o4y ip5 p_ »Pyreees B whose Hamming weight satisfies

the 1nequa11ty in the lemma.. Note first that (ig, EO) = (1 G ) and
hence has weight N ... But for any fixed code, any u >0, and any -
ﬁxed choice of il, 12, tevy -1 1t follows from (1) that

K ,pu) - ,1 ) + (o, Z G i 'u_,ij)‘ ‘
Smce the second vector on the rjght is a ﬁxed N-vector it follows
that the choices i, = 0" and fy = L result in N-vectors thaaare com
plemerits of one anotherwfor (iys p,). + But ctncc N h o*‘d,i one of
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these N vectors must have weight'at most (N-1)/2 . Hence, for :
any code, we can choose i, iz <oy iy, inorder so that (i, ,
has weight at most (N -1) 2 for u=12,., ¥ m and the lemma 1s :
proved. ~
Lemma 3: For m even, d(m, N, K) < d( ZN 2K) . .
Proof: For any code with parameters “m -Zlm R N K ‘and defining -
matrices Go» Gl’ eeey, G we consider the new code with para-

x ok 2m* -
meters m » N =2N and K = 2K with deﬁning matrices - o
. sz GZj-l S T *
’ Gj= ‘ jv=o,.1, o-e“,mvl
Gy G2 o I

where we define G_; and Gy, both to be the all zero matrix. Also,
we set the N* = 2N vector ‘ o ‘ S

| ~ 8
" -1-1, Loy 2j+l)

and set the N* -K ‘- 2(N ~-K) vector

. P—j (BZj’ o)

It is then readily checked that for this new code, p, satisfies (1)
with the matrices G; of the old code. “Hence, from (2), it follows
that the minimum distance of the new code satisfies g

S
—~

* i
d,. = min W, (1, yoves s Bos Pyy o5 )
FD 1,0 or {40 120’21 -m+lp-0 1 2m+1

or both

where the righthand side is evaluated for the old code. Hence the
minimum clearly occurs with i, =0 (which implies = 0) and
1,#0 so that the righthand side of f the preceding equation differs
from . {2) only by a trivial increase in indices by one and hence also
has value d .. Hence, we have shown that for m even, given any
code: with parameters m, N and K, we can constriCt a second code
with parameters -2- 2N, and 2K having the same minimum distance i
and thus the lemma is proved. o SR -
The last preliminary result which we shall need is the self«-
evident: . . ,
Lemma 4: ' d(m,N K) <d(m+l N K)

°." We are now ina position to prcve the main fesult of :his section. :
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Theorem 1: d(m, N K) < [m+5 ] (N - K) + l 7 whére the square brackets
denote the'integer part’ of the enclosed number. ST . n
Proof : Consider first the case when (N~ K) is even Then

d(m,N,K) <d(m,N x+1 1) <(N K+1)+—(N K)

where the first inequality follows from Iemma 1 and the second from' '
iemma 2. Hence the inequality in the theorem actually holds with :
strict inequality in this case. W :

s Next consider the case when (N K) is odd. Then '( .

s d(m, x) <d(m,N K+1, 1) <d([m+1]a

ZN 21( + 2 2)
where the first inequality follows from lemma 1 and the second from‘
the combination of lemmas 3 and 4. Again applying lemmas land 2 " -
in order to’ the last member of the preceding inequality, we obtain

d(m, N, K) <d({1‘i-ﬂ,zn 2K +1, l)<2(N x)+1+[ ]](N -K)

which is equivalent to the inequality in the theorem Thus the theorem
is proved for all cases. -

Recalling that “I-‘D (m + l)N and that R K/N we obtain ;
immediately from Theorem I3 : ‘ v

Corollary 1: - lim’ EL@:M). <'l"(1’-kR) . B :
_ " m-w "D | S o

Corollary 1, ‘which is the asymptotic case ‘of Theorem 1 for

large constraint lengths n provides an upper bound for the ratio
dr?/ npp that coincides wi‘?h the usual asymptotic Plotkin upper bound
[ 3] for the dmm/“ ratio for a.block code with rate R and constraint .
length n . -
The key idea in deriving the preceding bound namely the con= "
tent of lemma 2, was first pointed out to thé author by Jones. [ 4} in-
1962, The: content of this lemma ‘has also been independently stated,
by Lin and Lyne [5]. The remainder of the derivation, i.e. the nec-
-aasary tricks to reduce the general case so that lemma 2 may be ap-
plied ‘wag supplied by the author.

Wilder [ 6] ‘has recently generalized the preceding dexivations to S
convolutional codes defined over an arbitrary finite field GF(q) . IR
Jn this gener,il case, the righthand side of the inequality in corollary l“’_-?"
becomes A2+ (1-R). which coincides with the asymptotic Plotkin - .-
hpund for: bloek ‘codes,’ More surprisingly, in the binary case, wilder -
found that the inequality in lemma 2 is an -equality in many instances. .
For N= 3, “Bussgang's. tabulatlen'{ 7] of optimal codes shows that .. "«
sauality 8 obtained for 'm < Wilder found equality for .m X ¢ i
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when N =5, and equanty for m<3 for general N . Wilder also -
succeéded in gem..alizmg lemma 2 to apply to-a class of - nonlmear
. ‘tree codes of Wthh convolutional ‘codes are the linear specxal case. .

3. Gilbert Lower Bound on Definite—Decoding Minimum Distance
A, The Gilbert Bound on Feedbaqk-Decoding Minimum mstance"

We digress momentarﬂy to consider the well—known Gilbett lower
bound on- Por clarity, we treat only the case where N =K +1,
i.e. where p is a single binary digit p, and R =2 . .Inthis
case, the matrices G,, which have dimension (N X) XK in gen-s
- eral, are simply K—dimensional row vectors. . We-¥hall emphasize :
“this fact by writing the matrix G, as Gy . “We shall here and here'-’-
“after use a prime to denote the- n'anspose of a vector so that. G for -
‘instance is a K-dimensional column vector. With this notation, it
then fonows from (1) that SR : S
. .r— _-'r.l [ 'iﬁ'r."::l—‘-" e
v 1] s | : :
AP A e

. ' 2

3y

1 4 - v 4 s
.. mJ [ fme1 e %o | %n]
and we shau refer to the matrix of mformation vectots in ( 3) as the '
i-matrix. Note that the i -matrix is an . (m+1) ¥ (m + 1)K dimen-
'sional matrix of binary digits. We shall refer to the (m+1)-dimen-~
_'sional vector on the: jefthand side of (3) as the p-vector and shall -
_refer to the . (m-l- l)K-dimensiona} veotor ( 1, o , ) as the
..1-VeCtor.' U :
. A particular code wiu have dPD < d 1f and only if there is an - ,
‘{=vector with '{,# 0 anda p-vector satisfyinq {3) whose combined

Hamminq weight 1s: less than d .. . But. since there are only n
(K+1) (m+1) positions m the combmed vectors, there are O y

‘. possible choices of. fow weigh?. cggnbl.%aﬁo

sen’ made of the. well-knaw:i" nequality [8
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where H(6) =-51log,6 - (1-5) logz(l §) is the binary entropy func-
tion. Note next that i.# 0 guarantees Xhat the 1i- matrix in (3) has.
rank exactly m+ 1 so—ohat any combination of an i-vector with {,#0
and a p-vector isa solution of (3) for a fraction exactly 2= (m+l) of ~
all the codes. ‘Hence, it follows from (4) that if ' :

d. 7 . )
H(——) - (m+])
FD Nppy ;

2 ' RS

-n
. |

then not all the codes have a combined i -vector and p-vector with "
ig* 0 with Hamming weight less than d . Hence it follows that
there must exist at least one code such that its minimum distance
satisfies

n  H(d n..} -~ (m+1)
Z,PD “FD''FD ; 21=20

Since (m+1) =npp(1-R), this inequality can be written
H(d /M) 21 =R o (6)

for at least one convalutivnal oodda of vate B and Conslialing tepabh
npp - Inequality (6) is the usual asymptotic Gilbert bound [ 9] which
holds for arbitrary R = K/N although the denvation here has been -
restricted to N=K+1. . :

B. The Gilbert Bound on di:)D

. A second decoding method for convolutional codes, called
definite’ decoding (DD) by Robinson [2], calls for the decoding esti~- -
mate of i, to be made without employmg previous decoding estimates..
The purpose of DD is to avoid the: error-propagation effect inherent in-
feedback decoding. In particular, we assume that the decoding esti~ .
mate of i, is to be based on the received digits corrésponding to~ - ‘
-1-um’ Lgemtls oo o0 iy andtcb)g3 v s Pydm 1-©- corresponding to
the parity digits affectedm by i to all the information digits af~" o
fecting these parity digits. ‘I'he number of these digits is the deﬁnite- 5

.‘decodbing constraint length, nDD v K
' -(2m+I)K+fm+1)(N K)..‘

DD

In order to make u = 0 typical of the general case, we abrogate ou
previous asEumption that 1, g for u.<¢ and ‘hereafter'allow thes
past mformauon digits to assume arbitrary: values - The's eﬁ‘_xi;_te-de
coding minimum distance, dpp; !s then appropria tely’ aefin”ed as-.
the fewest numbor o( positions that two encoded seqiences with dif
feting values of 1, aro found to dtsaqrcc over the: DD . constraint

_g-a ]

S By the usual lincarity argument, it thon Ik cllows that -
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dpp = min Well vl
1,0

:---,_i_m:'.P_o,Bl,---;Bm)- {7)
Comparison of (2) and (7) reveals that for any code dDD < d .
"Hence, upper bounds on dI-‘D are a fortiori. upper bounds on cP

but lower .boynds on dI—‘D cannot be presumed to be lower bounds on

dpp - .
Until further notice, we consider only the case N =K+1 as
was done in the preceding subsection. For this case, we have

nyp = (2m+ DK + (m+1)° (8)

and from (3) as modified to account for the fact that we no longer as~
sume 1, =0 for u<o0

1 1 ] 1
Po| |Lo 21 v dp || S
P it . i ess 1 G!
1]_|~1 =0 =—-m+l(| =1
il (9
1 ) ) [ | ~
Pn m -im-l ee io _C_;;n .

i In the remainder of this subsection, we prove a lower bound
on dpp which we call a "Gilbert bound' not because of a formal
similarity to (6) but because the method of proof will be along the-
same lines that led to (6). That some modification in the proof will
be required is clear from the fact that when i, = (1,1,...,1), all
u, then the i-matrix in (9) has rank only 1 and hence fully 2-1 or
one-half of all the codes have the p-vector (0, 0, ..., 0} occuring -
in combination with this one particular i -matrix. Fortunately, the
combined p-—vector and i -vector [ where we now take the i -vector to
bo (i (U ST m)] have high Hamming weight §o that it
does not follow that this one-half of the codes have small definite-
decoding minimum distance. For ease of reference, the combined i~
vector and p-vector, i.e., the vector

(i ,Po,Pl,u.,p ) ’

R S URSRTE
will be called the code-vector:
The argument that we shall use to obtain the Gilbert lower
“bound on dDD runs roughly as follows: Let Mr be the number of
code-vectors with i,# 0 such that the i -matrix has’ rank r and
“ Wy {code-vector) <-8 Then (assummg that it appears in some code)
each such code vector appears in a fraction 2""» of all the codes.
Hence if
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'
. a' -a—_,l ‘ '..[V:_'e'-n
1 . 1
3; % vt 2.
‘.l . t l‘
2m 2pi " Sm-p

) (where each a is a K-dimensional binary column vector) such that
the matrix has rank r, its first r rows are linearly independent, and .
the linear combination of the first r rows which produces the (r-H) -St
row.includes the first row with a multiplier of - 1. 0o

Thus if Aj denotes the (j+1)-—st row of a periodi,c matrix {10) ,1
then ' : ,

AL St o den ey T

(11) holds by the definition of a periodic matrix when ‘§=r; the form
of (10) and the fact that A,, j >r, must be linearly dependent on
precéding rows. guarantees that (11) must hold for j >r as well. Con- :
versely, if r >0 is the ,smallest integer such that a recursion of the "'
form (11} holds, then a matrix of the form (10) 13 perlodic with rank i
We see directly ﬁ'om (10) that (11) is: fully equivalent to LY

= Z cg -j-g ‘ (c, 3,1) , J %ﬁr'.n’. r-in+1:,' .o

(12)

=l

Letting K+h-ll ‘hs= 1 Z, TN I( denote the ‘h-th digit 1n a,,
see ‘that 12) in tum 1s funy eQuivalent to - §

Y =Z 2ok (o= h 3 eoniK, Gemii

- _\ .
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) . We define the outer-fringe of a periodic ma'trix (10) to be the
vector - . o o Ry ;

‘E-n’ B pap s dp) = (8 -nk? donga’ T mK+K- ),
and note that ‘this is an (m+n+1)l(—d1mensional column vector " ‘The -
recursion (13) is just the statement that the outer-fringe i8 an (m+n+l)K
digit output segment of a linear feedback shift-register (FSR) with tap
connections every K-th stage as determined by ¢j, ©5, s+, ¢, o This
FSR is shown in Figure 1. Note that since ¢, =1, the last stage of
this rk-stage linear FSR is:always tapped, i. e. the FSR is non-
singular, and it is well-known in this case that all output sequences .
are periodic. This is the motivation for the nomenclature in definition
2, although of course the outer-frlnge may not contain’ a complete
period of an output’ sequdnce since’ the latter can in fact beas great as
X( K(2f - - 1) .. We note further that the outer-fringe cannot be an output -
segment of any such - FSR with fewer than rK stages since'in the
latter case the periodic matrix (10) would be found to have rank less
than. r . We state the essential facts brought out in this dlscussion S
as: . S Dohnn
Theorem 2 : The ou,ter-;lnge of a rank T periodlc matrix (10) is an
(m+#1)K > 2rK digit output segment of a’ yntque -rK-stage nonsingular .. =
linear  FSR and of no shorter linear PSR tapped only every K-th stage: .
We next turn our attention to proving several facts about the .=
output sequences of FSR's that will be exploited in the sequel. It
will prove convenient to state these results in terms of thel fractional - -
weight. of a vector v which we deﬂne 1o be the quantlty W (v)
where n. is the dimension of v . . 1
Lemma 5: PForany n>L >0, and any. 5 0 < § <3y “the m;mber of
binary n-digit segments in anyset such that each segmen,t has fractionalf
weight & orless angl no two eg{ments colncide in any span of L con—- :
secutive digits is less than 23L '
Proof ¢ Let M. be the maximum number of segments .'m Such a set and
suppoSe fi;'st that L < n < 3L . Since,all- segments must be distinct o

[Sn] [36L]
M< Z ()‘<

1-0

where we have made use of ( 5) and [ ] throu hout this proof denotes
the’ integer part of the enclosed number. ‘It remains to consider . h>3L o
Let n =iL +n' where i is the quotient and*‘ n': theé remainder when e
is'divided by L . We note that no segment can have weight more than -
[Sn} and hence each segment must ha’ weight [isiL] or less ln‘l S
ﬁrst 4L pbsmons. Suppose that: P S U
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M > 2, ( ) —M"whete i

L . j= 0 Sl L
In each of- the ﬁrst i Spans of T digits' the verag we1ght of th
M segments cannot be less than that: of the” M‘ disnnct lowest:.
weight vectors of length L, “i.e, the (Ij‘) vectors of weight '} fo
§=0,1, .., m . But, forami k <3 Zm, the ( ) vectors ofweight
k ‘are outnumbered by the . ( ) vectors of welght m=k 89 that ;

- average weight of these - M!' vectors exceeds Lm Hence, in their
first 1L dj_.gits, ‘the: M Segments have’ average weight exceeding

[—-6L+ 1]

M< Z _ ()<z

where th third 1nequa1ity holds u der the fu_ 1
sm f [—-x+ 1] < 3x for. any x >&
1s tt‘ivial and 11: is readily dhecked that the'lemma is tme In

»this case, & i R
. An immediate appfl’icatmn of lemma 5

Lemma 6 : For any -n>L, and any 6.0
“output segments of length 311 o&i)ai
linear FSR,. fewer than z

have fracﬂona‘ ’wei‘ght‘; 5 or

spectal case of an. L = rK sbage register) so that any two segment
,which agree in such a span must agree e\gerywhere thereafter.



"I-OO Some}Ai:;c’b'ra.ic And Dista now Frop

'can be no more valid outer-mn es of fractionai

'_gne (yn)-stm _,the z—m&x of;(9)‘ and 1e
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t

L= % Sl g j = sem, semtl, ..., t-] (18)

and .
. . |
1.+ g}]ﬂcg Lig. a9

Now suppose that I;, forany u>t, ‘can be written as a linear
combination of preceding rows, i.e. D T

SR ) -Za 1 Voo o (20)
. u‘ hel - h u-h < 4' : R

But (20) is equivalent t'o

u

4= Lo JTumumL w20

which in particular,- since’ u-m <t <u, implies
_%_t_-zlht_h.._; EI (Zl).
But the terms in the summation on the righthand side of (21) 1nvolve

only i g for j in the range such that (18) is vahd. Hence we may

use (18) in (21) to obmin
rae L L w.o s
_1_,(---}:&; ®*n = g—t-h-g Z_;__ Z__;_ h—t-g—h o .»—:'-‘Z;Z’

We now recognize, smce t-u- -L >u m, that (20') _may be used to_
rewrite the rlghthand side of ( 22) which yields . =~ :

L= c;_ ol (28)
-t g=1 Q‘t-g T | ‘

and hence gives a contradiction of (19). 'We conclude that the only :
rows in the i-matrix (9) which can be written as linear combinations:’
of preceding rows are the t-s rows satisfymg (16). ‘Since the !
matrix has. m+l rows, - its rank then is exacly (m+1) - (t 8). as:
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claimed. But therank r is given as less than o . We have already

noted that s <r, and hence t= (m+l)~-r+s>m~-r. Hence all the
rows in the reduced i -matrix (14) are rows which satisfy the recursion
(16) and hence this i -matnx is periodic as claimed. Moreover it has -
rank L <r .

-« From (9), we fmd that

i1 .t
P. - —lr i vee
P il ! oo
r+l o T4l r (24)
il [}
Pr-r Lher Amera o0 ’

We call the lefthand side of (24) the reduced p-vector and note that .
it is m-2r+1 component vector uniquely determined by the reduced
i-matrix. The outer-fringe of the reduced i -matrix is a 2(m-r)K+K
component vector that we call the reduced i -vector. The combination
of the reduced p-vector and reduced i. —vector will be called the re-
duced code~vector.
Lemma 8 : If the reduced i-matrix is periodic of rank 1, thenthereduced
p-vector is ah output segment of'an L-stage nonsinguiar linear FSR
uniquely determined by the reduced i -matrix. In particular,.

‘ Z_lcg g (L =D .J=r+L?r+vL+L,.k..,m-r (25)

where ¢, 9=1,2,...,L, arethe FSR connections uniquely de-
termined by the reduced i-matrix. ;
Prooi: From (13) we see ' that the digits in each column of the reduced
1-ma i-matrix satisfy the recursion (25). But (24) shows that 'the reduced
p-vector is always a linear combination of these columns and hence
also satisfies the recursion (25).
We are finally in a position to tie all the preceding results

together so as to obtain a Gilbert bound on dpp ¢ - 1

' We begin by noting that for r <A(m+1), where A, 0 <A<z ’
will be chosen later, if the reduced p-vector has fractional weight v
) then the entire code-—vector has fractional weight &' satisfying

©, _ m-2r+l 1<2A Y -
'z > o 26
6‘. - ,nDD 61:) Z;K-i-l _sp R (26)

' Similarly, if the reduced i-vector has fractional weight 6 then



Lo RlaGney - . S T N

s Zg -r2K+ 6 >(1 24)
DD»

AK-H.

.

where the last inequality réquires f;hé provis_o o

1~2A

>
m—A

and henceforth we assume that we are cons;.dermg only m sufﬁcient r:
large fo satisfy this inequality. 3

For a given §, we wish to demonstrate the ex1stence of a
code such that dDD 2 §npp - We begin _by choosing

2K+1 N S |

81‘ 2K 1-2a 0z . (28)
and )
b, =tisa8<F . (29)

We next divide the set of all possible code-vectors having 1 ,# 0
and fractional weight § or less into two sets S; and S, de?ined_
as follows. Sl contains only those code-vectors such that the i- "=
matrix has rank r satisfying r>A(m+1) and S2 contains those

for which the i ~matrix has rank r, ‘r<A(m+l) . :

First consider the set S; . S8; cannot contain more than all of -

the code vectors of frattional weight ' § or less, and each vector in -
S; appears ina fraction at most 2-(m+1)A of all codes. Hence the'
fraction F of codes which contain any vector in S; satisfies ’

[on 1 SR
P < ZI;’D(“DD 2-(m+1)A DD{2K+1 H‘S’}

)
j=0 3

where here and hereafter we use [ ] to mdlcate the integer part of
the enclosed number.

The consideration of set S becomes cons1derab1y more in-}
teresting.. From (26) and (27) we conclude that ahy vector in Sy

| _(30)"-') ;

must have both fractional weight §; or less in its reduced i. -vector o
emd fractional weight §, or less in its reduced p-vector. Hence, A
the number of distinct reduced code-»vectors found within the vectors -

in 3-. such that the reduCed i-matrix has some. given rank . L is lesa

‘w"*‘&ﬁ
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6KLH(5.) 3LH(6,)  6KLH(S )+ 3LH(6 )
2 Yz e 4 . P

which follows from the facts that lemma 7 gives the ﬁrst factor as _
bounding the number of reduced i-vectors to be considered whereas
lemmas 6 and 8 give the second “factor as bounding the number of p-
vectors to be considered with any given i -vector. ‘Note also that the.;
reduced i -vector is a non-zero outpyt. segment from a KL-stage non-
singular Tlinear FSR and hence must have at least 6ne non-zero digit:
every: KL digits which requires that it have fractional weight excee
ing &5 . Thus 8, contains no reduced i-vector such that L<u

‘But the fraction of codes containing any reduced: code-vector such
that the reduced i -vector in (24) has rank ‘L is at most 2T TW
conclude then that the 'fraction l-'2 of codes containing any code-
vector in S satisfies S g L

e 6KLH(8 )+’131'.H(é )L

2
; L= [zsx ¥ 1]

e

"o

With the aid of (28) and ( 29) and ﬁrom the convexity of the'
function, we. obtain :

Ms

'.'il' < 2.
Z - 7 .
| 12A1“]_.

1 [2K+1 5
4which upon summing of the geomeu'ic

{6

“"Provi__giec_i» that .

Combining ( 30) and (32) s _under the ‘proviso
N that the fraction of codes containing any elemant of 8



PI E F < 2 D 2}\+1
( 34) then becames

o 1 v
B Wy i TS
psr,<z DDSEKD T

-We next 'c‘ihdo':se! 5 to Satisfy -.,

“ - 1 1
H“) <76 10 21<+1

which we note is consistent w1th our prov1so ( 33) and is also suf- :

“ficient to guarantee that the first tefm in (35) vanishes as np. get
larqe. It remains to show that the second term in (35) is less than :
1. ' To see this we note: that this term has’ its maximum walue when
K =1 and (36) holds wi&h equaﬁt i wluch c se the term can be .
.evaluated to be e SRR

fwnh io #0 and fractional weight 61
“that. there *exists as;le,a,s,ﬁ-,one ‘cade with ’» 'e'ﬁn”i
dismnce dDD satisfying !
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sos

Theorem 4 provxdes our long-sought Gilbert bcmnd for the Spec-.,
al case when-N =K + 1 . We now sketch the manner in which this~ -~
bound can be extended to arbitrary N >K . In the general case, there
are ‘N=K p-vectors, each of which, say the h-th, satisfies (9) with
G, interpreted as the h-th row of the matrix Gy, h= 1, 2,...,N=K:
Tgus each of these reduced p-vectors.is an output sequence of the :
same linear FSR and henc number_of distinct teduced code-vec-
tors in S s less than Z&L};ﬁsﬂ f 3 N‘K)Lﬁ(sp) < Equat&oxks
(28) and {29) are now replaced by & =N3E 1 sands = +1<T'2“5
The other arguments ‘go through vittuahy unghange% and resulthi . A
Theorem 5: Fof any N->K and for all n D sufficiently large, there L
exist convolutional codes of rate R= % and’ deﬁnite-decedmg mini- -
mum distance dDD such that

H(;;;) 2'1'5'*-—1+R S ey

4.’ Remarks
Robinson [2] has given what he calls a 'Gilbert bound" on -
dDD’ but this bound is not asymptot:cally useful since it shows d
growing less than lineatly with npp for large npp . ‘Wagner, [ll]D
has obtained an asymptotically uséful’ bound on d for a class of -
-ume-vatying codes, viZ. codes such that G 8?15 a periodic
function of u . Wagner glso used a differer{t, and less natural, def-
inition of the definite—decodlng ‘constraint length from that employed
herein and his resultant bound was useful only for R <4 ., Por 7
Wagner's codes, but using our definition. of constraint length Morrlssey
and Costello [ 12] have recently obtamed the bound -

nyp .sufﬁciently large. 'l‘ime-varymg codes are an artifice

to avoid € rank ‘probléms encountered with. ordinary convolutional
codes that had to ‘be_surmounted in this ‘paper, but appear to be of
little practlcal mterest due o the mereased instmmentanon gom= . -
plexity ‘We' conjecmre that: ﬁqhter béundmg arguments, pargicularly R
‘ift ouF lemma 5 which 1s especially crude, can eventually doaway . . .
with the additional je' of ten in (38): compared to (39).. Wecould : -
“have improved this factor somewhat in the present: instance, but only = -
at the expense of complicatmg sevéral proofs beyond what any reader. - -
~could endure, . Wé have settled for obtaining what we believe {s the [~
funcuonal fom of. the thhtest pOSSible beund thhous conccminq cux- Dubel
selves oveﬂy about zhe consmnt -nulupuer. Fo PR ARSI
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Lemmas 5 through 7 were proved some ili‘ne 290 by the author -
and used by Kolor [13] to obtain what we believe is the first asym- .
totically useful bound on dpp for ordinary convolutional codes. ;
Kolor restricted himself to the spécial case K =1, N = 2. Itis dif- -
ficult to compare the K =1 case in theorem 3 to Kolor's result since -
Kolor quite sensibly ignored the 'integer part' difficulties which to. '/
overcome rigorously caused our lemma 5 to be a very loose bound. -
Kolor's major result was a decomposiuon theorem for parasymmetnc
matrices (matrices of the form (19) with K = 1) which is ‘essentially
embodied in our theorem 3. In most respects the material in section 3.
is a generalization and simplification of the method used by Kolor for .

=] and N =2, as well as an attempt to put the theory in a rigorc‘nu.sf
framework :

Finally, it should be mentioned that Robinson [14] has proved '
an upper bound on dpp thatis asymptotically the same as the bound..
in section 2 and also reduces to the Plotkin block coding bound for =~

= 0. In the nonasymptotic case, for small N-X, the bound in o
section 2 is generally superior to Robinson's bound, but is inferior in
general when N -K is large, The virtue of the bound in secuon 2is -
its conceptual simplicity and ease of derivatio,n as compared to E
Robinson s bound. : .
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Figure 1.« The rK-stage nonsingularlinear feedback
L shift-register associated with a rank T
-+ perfodic matrix et o
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